CHAMBRE DE COMMERCE ET D'INDUSTRIE DE PARIS DIRECTION DE L'ENSEIGNEMENT

Direction des Admissions et Concours

E.S.C.P. - E.A.P.

CONCOURS D'ADMISSION SUR CLASSES PREPARATOIRES

OPTION SCIENTIFIQUE

MATHEMATIQUES I

Mercredi 17 Mai 2000, de 8h. à 12h.

La présentation, la lisibilité, l'orthographe, la qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.

Les candidats sont invités à encadrer dans la mesure du possible les résultats de leurs calculs.

Ils ne doivent faire usage d'aucun document ; l'utilisation de toute calculatrice et de tout matériel électronique est interdite.

Seule l'utilisation d'une règle graduée est autorisée.

Les parties III et IV sont indépendantes des parties I et II.

Partie I

On considère la fonction indéfiniment dérivable φ définie, pour tout réel x de [0,1[, par : $\varphi(x)=\frac{1}{\sqrt{1-x}}$.

1) Pour tout réel x de [0,1[et tout entier naturel n, établir l'égalité:

$$\varphi^{(n)}(x) = \frac{(2n)!}{4^n \, n!} \, (1-x)^{-\frac{2n+1}{2}}$$

où $\varphi^{(n)}$ désigne la dérivée n-ième de φ (avec, en particulier, $\varphi^{(0)} = \varphi$).

2) Pour tout entier naturel n et tout réel x de [0,1[, justifier l'égalité suivante :

$$\varphi(x) = \sum_{k=0}^{n} \frac{C_{2k}^{k}}{4^{k}} x^{k} + \int_{0}^{x} \frac{(x-t)^{n}}{n!} \varphi^{(n+1)}(t) dt$$

- 3) a) Pour tout entier naturel n, prouver l'inégalité : $\mathbf{C}_{2n+2}^{n+1} \leqslant 4^{n+1}$.
 - b) Pour tout couple (t, x) de réels tel que $0 \le t \le x < 1$, vérifier les inégalités : $0 \le \frac{x t}{1 t} \le x$.
 - c) En déduire que, pour tout réel x de [0,1[, on a :

$$\lim_{n\to+\infty}\int_0^x \frac{(x-t)^n}{n!}\,\varphi^{(n+1)}(t)\,\mathrm{d}t=0$$

4) Pour tout réel x de [0,1[, démontrer l'égalité :

$$\frac{1}{\sqrt{1-x}} = \sum_{k=0}^{+\infty} \frac{C_{2k}^k}{4^k} \, x^k$$

Partie II

On se donne un espace probabilisé $(\Omega, \mathcal{B}, \mathbf{P})$. Sur cet espace, on considère une suite $(X_n)_{n \in \mathbb{N}^*}$ de variables aléatoires indépendantes et de même loi que X_1 , cette loi étant définie par

$$\mathbf{P}([X_1 = 1]) = \mathbf{P}([X_1 = -1]) = \frac{1}{2}$$

On pose $\underline{S_0=0}$ et, pour tout entier naturel n non nul, $S_n=\sum_{k=1}^n X_k=X_1+X_2+\cdots+X_n$.

Par exemple, S_n pourrait représenter l'abscisse (aléatoire) au temps n d'une particule se déplaçant sur un axe et partie de l'origine au temps 0, qui saute à chaque instant d'une unité à gauche ou d'une unité à droite avec une égale probabilité.

On note Min R le plus petit élément d'une partie non vide R de \mathbb{N} . On pose aussi, pour tout élément ω de Ω , $R_{\omega} = \left\{ n \in \mathbb{N}^*; S_n(\omega) = 0 \right\}$ et $T(\omega) = \left\{ \begin{array}{cc} \operatorname{Min} R_{\omega} & \text{si } R_{\omega} \neq \emptyset. \\ 0 & \text{si } R_{\omega} = \emptyset. \end{array} \right.$ On admet que T est une variable aléatoire.

Ainsi T pourrait être le temps d'attente (aléatoire) du premier retour à l'origine de la particule évoquée plus

Pour tout entier naturel n, on note E_n l'événement $E_n = [T > n] \cup [T = 0]$.

1) Soit n un entier naturel non nul. On pose $A_n = [S_n = 0]$ et, pour tout entier naturel k tel que $0 \le k \le n-1$,

$$A_k = \left([S_k = 0] \cap [S_{k+1} \neq 0] \cap [S_{k+2} \neq 0] \ldots \cap [S_n \neq 0] \right) = \left([S_k = 0] \cap \left(\bigcap_{i=k+1}^n [S_i \neq 0] \right) \right)$$

Ainsi, pour tout entier k tel que $0 \le k \le n$, A_k serait l'événement :

« Pour la <u>dernière</u> fois avant l'instant n la particule est à l'origine à l'instant k » .

a) Pour tout entier k tel que $0 \le k \le n$, justifier l'égalité suivante :

$$\mathbf{P}(A_k) = \mathbf{P}([S_k = 0]) \ \mathbf{P}(E_{n-k})$$

b) En déduire l'égalité:

$$1 = \sum_{k=0}^{n} \mathbf{P}([S_k = 0]) \ \mathbf{P}(E_{n-k})$$

On admet que, si deux suites $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$, à termes positifs ou nuls, sont telles que les séries de termes généraux a_n et b_n convergent, alors en posant, pour tout entier naturel n, $c_n = \sum_{k=0}^n a_k b_{n-k}$, la série de terme général c_n converge et sa somme vérifie :

$$\sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right)$$

2) Pour tout réel x de [0,1[, établir l'égalité:

$$\frac{1}{1-x} = \left(\sum_{n=0}^{+\infty} \mathbf{P}([S_n = 0]) x^n\right) \left(\sum_{n=0}^{+\infty} \mathbf{P}(E_n) x^n\right)$$

- 3) a) Pour tout entier naturel n, calculer $P([S_n = 0])$.
 - b) À l'aide de la partie I, en déduire que, pour tout réel x de [0, 1], on a :

$$\sum_{n=0}^{+\infty} \mathbf{P}(E_n) x^n = \sqrt{\frac{1+x}{1-x}}$$

c) En remarquant que l'événement [T=0] est inclus dans E_n pour tout entier naturel n, montrer qu'on $a: \mathbf{P}([T=0]) = 0$.

Ainsi, presque sûrement, la particule citée en exemple, revient à l'origine.

Partie III

On considère dans cette partie une suite réelle $(a_k)_{k\in\mathbb{N}}$ telle que, pour tout réel x de [0,1[, la série de terme général a_kx^k converge. Pour tout réel x de [0,1[, on note $f(x)=\sum_{k=0}^{+\infty}a_kx^k$ et l'on suppose que :

$$\lim_{x \to 1} \left(\sqrt{1 - x} f(x) \right) = \sqrt{\pi}$$

- 1) a) Pour tout entier naturel p, déterminer : $\lim_{x \to 1} \left(\sqrt{1-x} \sum_{k=0}^{+\infty} a_k x^{(p+1)k} \right)$.
 - b) Pour tout entier naturel p, justifier la convergence de l'intégrale $\int_0^{+\infty} \frac{e^{-(p+1)t}}{\sqrt{t}} dt$, et, en utilisant le changement de variable $u = \sqrt{2(p+1)t}$, calculer sa valeur.
 - c) En déduire l'égalité:

$$\lim_{x \stackrel{>}{\underset{\sim}{\longrightarrow}} 1} \left(\sqrt{1-x} \, \sum_{k=0}^{+\infty} a_k x^{(p+1)k} \right) = \int_0^{+\infty} \frac{e^{-(p+1)t}}{\sqrt{t}} \, \mathrm{d}t$$

2) Montrer que, pour toute application polynomiale réelle Q, on a:

$$\lim_{x \to 1} \left(\sqrt{1-x} \sum_{k=0}^{+\infty} \left(a_k x^k Q(x^k) \right) \right) = \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} \, Q(e^{-t}) \, \mathrm{d}t$$

3) Soit h la fonction définie, pour tout réel x de [0, 1[, par :

$$h(x) = \begin{cases} 0 & \text{si } x \in \left[0, \frac{1}{e}\right] \\ \frac{1}{x} & \text{si } x \in \left[\frac{1}{e}, 1\right] \end{cases}$$

- a) Justifier la convergence de l'intégrale $\int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} h(e^{-t}) dt$ et donner sa valeur.
- b) Soit x un réel de [0,1[. En déterminant la valeur de $h(x^k)$ pour k assez grand, justifier la convergence de la série de terme général $a_k x^k h(x^k)$.
- 4) On admet l'égalité:

$$\lim_{x \stackrel{?}{\sim} 1} \left(\sqrt{1-x} \sum_{k=0}^{+\infty} \left(a_k x^k h(x^k) \right) \right) = \int_0^{+\infty} \frac{e^{-t}}{\sqrt{t}} \, h(e^{-t}) \, \mathrm{d}t$$

En utilisant ce résultat pour $x = e^{-\frac{1}{n}}$, en déduire que, lorsque l'entier naturel n tend vers l'infini, $\sum_{k=0}^{n} a_k$ est équivalent à $2\sqrt{n}$.

Partie IV

On considère une suite $(a_n)_{n\in\mathbb{N}}$ décroissante de réels positifs ou nuls et, pour tout entier naturel n, on pose:

$$S_n = \sum_{k=0}^n a_k$$

On fait l'hypothèse que, lorsque n tend vers $+\infty$, S_n est équivalent à $2\sqrt{n}$. On va montrer qu'alors a_n est équivalent à $\frac{1}{\sqrt{n}}$.

On notera |x| la partie entière d'un réel x.

1) Soit (α, β) un couple de nombres réels vérifiant: $0 < \alpha < 1 < \beta$. Pour tout entier naturel n tel que $n \neq \lfloor \alpha n \rfloor$ et $n \neq \lfloor \beta n \rfloor$, justifier l'encadrement:

$$\frac{S_{\lfloor \beta \, n \rfloor} - S_n}{\lfloor \beta n \rfloor - n} \leqslant a_n \leqslant \frac{S_n - S_{\lfloor \alpha \, n \rfloor}}{n - \lfloor \alpha \, n \rfloor}$$

- 2) a) Soit γ un réel strictement positif. Déterminer les limites des suites de termes généraux $\frac{n}{|\gamma n|}$ et $\frac{S_{|\gamma n|}}{\sqrt{n}}$.
 - b) Soit ε un réel strictement positif. Montrer que, pour tout entier naturel n assez grand, on a :

$$\frac{2(\sqrt{\beta}-1)}{\beta-1}-\varepsilon\leqslant\sqrt{n}\,a_n\leqslant\frac{2(1-\sqrt{\alpha})}{1-\alpha}+\varepsilon$$

3) En déduire qu'on a : $\lim_{n \to +\infty} \sqrt{n} a_n = 1$.

Partie V

- 1) a) À l'aide des résultats obtenus dans les parties précédentes déterminer, quand l'entier naturel n tend vers l'infini, un équivalent de $\sum_{k=0}^{n} \mathbf{P}(T > k)$.
 - b) En déduire un équivalent de P(T > n).
- 2) La variable aléatoire T possède-t-elle une espérance?
- 3) Pour tout réel x de [0,1], prouver l'égalité :

$$\sum_{n=0}^{+\infty} \mathbf{P}([T=n]) x^n = 1 - \sqrt{1 - x^2}$$

- 4) Soit n un entier naturel.
 - a) Donner le développement limité au voisinage de 0 à l'ordre n de la fonction $u \to \sqrt{1+u}$.
 - b) En déduire le développement limité au voisinage de 0, à l'ordre 2n de la fonction $x \to 1 \sqrt{1 x^2}$.
 - c) Montrer que, au voisinage de 0 on a aussi :

$$1 - \sqrt{1 - x^2} = \sum_{k=0}^{2n} \mathbf{P}([T = k]) \, x^k + o(x^{2n})$$

d) En déduire que, pour tout entier naturel n non nul, on a :

$$\mathbf{P}([T=2n]) = \frac{1}{2n-1} \cdot \frac{\mathbf{C}_{2n}^n}{4^n}$$

On rappelle qu'il y a unicité du développement limité, au voisinage de 0, à l'ordre 2n d'une fonction.

Pour tout élément ω de Ω , on pose :

Four tout element
$$\omega$$
 de Ω , on pose:
 $R'_{\omega} = \left\{ n \in \mathbb{N}^*; n > T(\omega) \text{ et } S_n(\omega) = 0 \right\}$ et $T_2(\omega) = \left\{ \begin{array}{ccc} \min R'_{\omega} & \text{si } R'_{\omega} \neq \emptyset. \\ 0 & \text{si } R'_{\omega} = \emptyset. \end{array} \right.$
On admet que T_2 est une variable aléatoire.

Ainsi T2 pourrait être le temps d'attente (aléatoire) du deuxième retour à l'origine de la particule.

5) a) Pour tout entier naturel n non nul, démontrer l'égalité :

$$P([T_2 = 2n]) = \sum_{k=0}^{n} P([T = 2k]) P([T = 2n - 2k])$$

b) En déduire la valeur de $P([T_2 = 0])$ puis, pour tout réel x de [0, 1], l'égalité :

$$\sum_{n=0}^{+\infty} \mathbf{P}([T_2=n]) \, x^n = (1-\sqrt{1-x^2})^2$$

6) Déterminer la loi de T_2 .